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356 J. G. GUNN ON LINEARIZED SUPERSONIC

PART II

The operational approach to linearized supersonic aerofoil problems is further developed. In
particular, the method is extended to give a general treatment of the drag on swept-back wings at
zero incidence. Problems involving the lift on swept-back wings are also considered, and a recur-
rence method developed for obtaining the lift on a trapezoidal wing with tips swept back beyond the
Mach angle. As a particular case this latter method is applied to the arrow-head wing.

INTRODUCTION

In Part I the author has applied operational methods to a variety of linearized supersonic
aerofoil problems. The treatment so far, however, has been, in the main, limited to aerofoils
with tips parallel to the undisturbed stream. It is now proposed to apply these methods to
the treatment of a variety of ‘swept-back’ wing problems, the angle of sweep back being
no longer restricted to be less than the Mach angle. Two main methods were developed in
Part I, which may briefly be characterized as the Fourier integral, and the Green’s function
methods. The first of these was particularly suitable for dealing with aerofoils at zero inci-
dence, for which, indeed, it provides a general solution. The second was employed for
problems with lift. We shall begin by applying the first method to investigate the variation
of wave drag on a swept-back wing at zero incidence. The second method will then be
modified to deal with various lift problems.

In general, we deal with a supersonic stream, velocity U at infinity with undisturbed
direction along the z-axis, impinging on an aerofoil of infinitesimal thickness lying, to the
first order, in the plane y = 0. If ¢ denotes the velocity potential of the dimensionless flow
disturbance, i.e. such that the disturbance velocity q = (u,v,w) = Ugrad ¢, then it is known

that ¢ satisfies the equation 7
Vip = M? 2520
where M is the Mach number of the incident flow. This equation is generally used in the
form
‘ 0%¢ 0% 82¢ o e
3x2+8y o @ =M1 ‘ (1)

STRAIGHT-EDGE AEROFOILS AT ZERO INGIDENGE

We consider first the case of symmetrical aerofoils at zero incidence. It will be possible
to build up a variety of straight-edge aerofoil cases by considering the simple problem of
a pointed triangular-shaped aerofoil, as shown in figure 10, for which both the upper and
lower surfaces have a constant slope ¢, say, along the z-direction, so that they may be
represented by the planes y = 4 (z—mx) ¢, where m = tan7. Physically we shall have two
very different states according as 7, the angle of sweep-back, is greater or less than (47— ),
where x4 is the Mach angle (= tan~!1/a). Suppose, first, 7<<im—u, then the leadmg edge
04 (figure 10) is ahead of the Mach line OM, and within the triangle A0 conditions are
as for an aerofoil of infinitely extended span. The conditions for such an infinitely extended
aerofoil are easily obtained from two-dimensional theory. We find

¢ €  €COST

oz J(@*—m?)  J(MZ%cos’t—1)’

[ ,4’2
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AEROFOIL THEORY. PARTS I AND II 357

u ECOST
PE J(M2cos?r—1)"

and the excess pressure Apy =

On the other hand, if 7> (47 —p), then the corresponding two-dimensional problem, in fact,
becomes a subsonic one. For our three-dimensional problem, however, theré is still a wave
drag, as is physically evident from. the hydrodynamic analogue of the long gravity waves
produced by a plank of constantly increasing length, the two surfaces of which are pushed
apart with constant velocity. It will be our object to investigate how the wave drag varies
as the angle 7 is increased.
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Ficure 10

For the formal solution of the problem we introduce the Laplace transform
Blwg) = [ e h(x,1,2) =

% 0%

This satisfies the equation PR i a2])2$, (2)
and the boundary condition (gg) =0 (x<0),
Y/y=0
i) .
-4 e"”‘”l’, as y—>-+0, x>0,
9y TTp Y ®)

For y>0, we suppose the general solution of (2) written in the form

¢ = on a(q) ez'dqx e~V (pP+ady dg.

Using the boundary conditions (3), we find

alq) = f et g=mk g (4)

C2mp/ (lf" +¢°)
€ ea{iqx \/([72+q2) y}

Thus b= ) TP

dqfwe—g(mﬁﬂ'aq) dg
0
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358 J. C. GUNN ON LINEARIZED SUPERSONIC

We are principally interested in the value of d¢/dz, and for this we find, since the transform
of

eV { 0, z<ay+mé (5)
TTEEA S Vilg—mE—aB, z>ay-rmi,
B [T ere-0 g (e )~y dy.
‘ o ek 3 ,
Thus 7z~ "l y Te=mE = {5 ]’ (6)

where the upper limit £, must be less than (z—ay)/m, and throughout (0,£,),
(z—mE)*>a?{(x—E)*+9).
The integral is easily evaluated for the case y = 0. The results are listed below.
(a) w>m(r< (br—p)):

. - 9 €
z>mx, but <ax, EE_—M’

Sl N L
- m&;_—mz)cos%{a_"g_}%}. (7)

Introducing ¢ = ax/z, so that within the Mach triangle from O, —1<o¢<1, we have in
place of (7)
i € cos-! (m~ow) (8)
iz w/(at—m?) a—mo)’
As is to be expected d¢/dz tends to the two-dimensional value as ¢ approaches 1, and to zero
as o approaches —1. Equally it may be verified from (6) that on the Mach cone

(& = @(x+7),

g €
raz—-‘—’ﬁm (0<0<(91),
where 6 = tan~1y/x, and cos§, = m/a.
(6) a<m(r> (r—p):
- v ¢ L mz—a’x
z>alx|, 2= " Jm o) cosh {a—lz_mx’}
‘ e [ m—ao
T T J(mr—a?) cosh l{la—mal} (9)

Again we see that d$/dz = 0 when ¢ = 4 1. It may be verified in this case that dg/dz = 0
over the whole surface of the Mach cone from O. There is now a singularity in the value of
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AEROFOIL THEORY. PARTS I AND II 359

9¢/dz at the leading edge of the aerofoil, given by ¢ = a/m. Physically this is not surprising,
as with the sweep back beyond the Mach line it is no longer possible for a shock wave to
form at the leading edge, and the discontinuous change in d¢/dy there may be expected to
lead to an infinity in d¢/dz. In the neighbourhood of the leading edge we must accordingly
expect disagreement between the linearized theory and the actual course of events. How far
this disagreement will vitiate the results for the drag over the whole aerofoil surface must be
a matter for experiment, or for more exact calculations. Such local singularities have, of
course, appeared before in the theory, e.g. in the flow round the edge of the aerofoil in the
case of lift, and, as in that case, their effect on the aerofoil forces as a whole may be small.

DRAG ON DOUBLE-WEDGE AEROFOIL

We are now in a position to study the variation of the drag on a double-wedge aerofoil
with various angles of sweep-back. We suppose the cross-section of the aerofoil parallel to
the stream to remain unaltered as the aerofoil is swept back, with chord ¢, and' wedge semi-
angle ¢. The plan area of the aerofoil is also assumed constant, say S = 2bc, where 24 is the
span with the leading edge normal to the stream. The wing tips are assumed parallel to the
stream throughout (figure 11).

0

Ficure 11

A slight extension of the result obtained earlier (Part I) regarding the absence of induced
drag on a finite aerofoil is useful. We consider a semi-infinite swept-back aerofoil. Outside
the Mach cone from O the pressure has its two-dimensional value, 4 4p, say, on the front
and back half of the aerofoil respectively. Within the triangle BOM there is a certain
pressure defect as compared with the two-dimensional value. In the regions 1, 2, 3, as shown
in figure 11, the pressure defect has the form

region 1 Ap,f(4,), .
2 Apof(dy), (10)
3 Ape{ f(A1) —2f(A5)}-

Here A,, A, denote the angles between the radii from O and 4 respectively to the point of
measurement and the stream direction, and the form of /(1) may be obtained from (8). It
is only important to note that f(1) = 0, A>4.

VoL. 240. A, 45
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360 J. C. GUNN ON LINEARIZED SUPERSONIC

Thedrag produced by this pressure defect over trlangle BOM can now easily be calculated.
Itis

AD = edpy([ fa,) ds—[ fa,) ds-2f s, ds—| ) as) |
= edpfa f00) ds—[ fa,)ds) = o. (11)

Thus the drag defect over triangle BOM is zero. The result has been proved for a double-
wedge aerofoil, but can easily be extended to any symmetrical swept-back aerofoil with
constant cross-section parallel to the stream.

We shall now consider the evaluation of the drag on the finite wing considered above, as
the angle of sweep-back 7 is increased from zero.

(i) At normal incidence (7 = 0) the drag force is given by

1
2625 =
D_—pUeS“.

(ii) As 7 is increased, by the result proved above, the induced drag due to the ends O, O’
will remain zero until the Mach line from O cuts the other edge of the aerofoil between
A'B’. This will happen when tan7 = ¢—1/4 (we assume, of course, that 4 = (2b/c) >1/a).
Up to this critical value of 7 the drag is given by

D = pU??2S§ m = tanr. (12)

1
(iii) The third phase is reached when 7>tan~! (¢ —1/4), but 7<<tan~! «. When the Mach
line from O, say ODE (figure 2), has not yet reached A4’ the drag is easily calculated as

D= puzesz{ Sf S a’S}

where ¢ denotes triangle B’DE, and f(1,) is obtained from (7), so that if

tanA 2 . —1/\/{(1——0‘1) (06—[—7)2)
o= , J) = —s1n m .
tan u 205(1———0701)
Similarly, if the Mach line from O cuts the edge O'B’ between O’ and 4/,
— pu2e?
D = pue'S ;s m2){ Sff dS+Sff )ds),

where d, 6’ denote the triangles cut off beyond the edge O’B’ between the Mach line from O
and the lines BB’, A4’ respectively.

(iv) 7 = tana. The leading edge is now along the Mach line from O. The value of d¢/dz
has not yet been given in this case. It can be found by taking the limit of (7) or (9) as m—>«.
Alternatively, it can be calculated directly from (6) substituting m = «. In place of (7) we
find for the single-wedge semi-infinite aerofoil

3¢___~ {1—|—a} (13)

dz 1—

As we might expect this vanishes at ¢ = —1 and has an infinity as ¢— 1.
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AEROFOIL THEORY. PARTS I AND II 361

For the finite double-wedge aerofoﬂ we have on the surface of the wing, outside the Mach
cone from O,

T2
Ap = /’f;ae / {liﬁ} on the front half of the wing

1_01
2 |
__rU 6[2 J {““’2}— A/ {1+"1}} on the back half of the wing. (14)

Inside the Mach cone from O’ there is a pressure defect for which the expression may
immediately be written down. However, by the general result (11), this pressure defect
will not affect the integrated drag.

The analytical result for the wave drag in this case can be derived from (14) by straight-
forward integration, but is somewhat elaborate and will not be quoted here. A numerical
case is included below.

(v) 7>tana. The sweep-back is now beyond the Mach line, and the pressures on the wing
must be calculated from (9). The pressure defect in the Mach cone from O’ will again make
no contribution to the integrated drag. The expression for the total drag force is somewhat
complicated but will be given here for reference. If we define parameters P, @, such that

p=", g-%m-o)
a’ ¢ a
.o . pU%S
then the drag force Dis given by D = on J(m—a2) (15)

2 _
where I= J P2—1 [ZCosh I(P—i—P—QJ) $cosh-1 P— cosh‘l{P+?—(PT1)}:|

+ G LAPHQ 11— (P + Q- 1]

—|—(%+ 4) cosh™! (P+Q) "‘2(—54— 1) cosh™! (P+%Q). )‘

NUMERICAL VALUES OF DRAG

As a numerical example the drag has been worked out for a double-wedge aerofoil for
various aspect ratios in a stream with undisturbed Mach number equal to /2. The dimen-
sionless coeflicient C = aD/pu?2S is plotted against angle of sweep-back of the leading edge
in figure 12. For swept-back aerofoils the aspect ratio is, as usual, taken as the breadth
normal to the stream divided by the chord. The coefficient C, as defined, starts with the value
1-0 at zero sweep-back. It rises initially as the sweep-back is increased, reaching a cusp-
shaped maximum value when the leading edge lies along the Mach cone from the leading
corner. Thereafter the value decreases quite steeply, but, for example, for 4 = 4 it is still
0-93 when the angle of sweep-back 7 = 60°. Thus it is clear that for the conditions considered
of constant-aspect ratio and constant cross-section parallel to the stream sweep-back s
only valuable in decreasing wave drag when it is very pronounced.

The general effect of sweep-back in diminishing wave drag is perhaps made clearest by
the hydrodynamic analogue of the long-gravity waves produced by a vertical barrier in an

45-2
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362 J. C. GUNN ON LINEARIZED SUPERSONIC

infinite sheet of water, when the two sides of the barrier are moved apart with a given
(infinitesimal) velocity. The wave drag in the aerofoil problem is proportional to the work
done by the barrier in the corresponding hydrodynamic problem. Initially, when such
a barrier is jerked into motion the water takes on a certain difference of level between the
two sides, but as the motion proceeds the difference diminishes, and finally disappears.
Broadly, the analogy to sweep-back of an aerofoil is for such a barrier to start with only
a small breadth, so that little work is needed to produce the motion, and to extend in length
only as the wave falls in level, so that the total work required to maintain a barrier of given
length in transverse motion at a given velocity for a given time is reduced.

I ! !
3.0 -

oD [pu?e®S
T
|

A=2)

! !
0 30° 60° 90°
angle of sweep back

Ficure 12. Drag on double-wedge aerofoil at zero incidence for various aspect ratios.
Incident Mach number = ,/2.

The numerical results show that the saving in work done is small, when the particular
boundary conditions for the aerofoil problem are introduced, unless the rate of expansion
in length of the barrier is much less than the velocity of wave propagation. It may well be,
in the aerofoil problem, that, in practice, the other effects of sweep-back, such as the
prevention of the formation of shock waves at the aerofoil surface, are much the most
important. -

WING TIPS NOT PARALLEL TO STREAM (PROBLEMS OF INGIDENCE)

The general ‘Fourier integral’ method used in the treatment of symmetrical aerofoils at
zero incidence is not applicable where lift is present, and d¢/dy no longer vanishes over the
plane y = 0 except on the aerofoil’s surface. It is, however, possible to develop various
methods to deal with such cases. The most direct method, where one of the wing edges lies
at an angle 7 to the stream, say, as Oz’ in figure 13, is simply to rotate our axes, and work
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AEROFOIL THEORY. PARTS I AND II 363

with the co-ordinates (#,y, z"). In terms of these co-ordinates the fundamental equation (1)
for the disturbance velocity potential, ¢, becomes

2 2
(l—M2sm21)a ¢ (?¢ = (M2%cos?1—1) g—z%—}—QMzsin'rcosr%. (16)

If Oz’ lies within the Mach cone from O, then M?sin?7<1. Equally, A? cos?r>1 implies
that Ox’ lies outside the Mach cone from O. For definiteness we suppose in the first place
that these two conditions hold. Then introducing

’

x
= Ja= sy’ (7)
| ae
()
x
7’/
>
A
zl
z
Ficure 13
“ 2 2
) (16) can\be put in the form ag:—{—a ¢ 2/:02‘?; ——/S’zg—z—g,' (18)
24 4
where = Misinreost o apooer .

— J(1—M2sin?7)
If ¢ denotes the Laplace transform of ¢ with respect to z’, and we write ¢’ = ¢t4£ 4, then, if

it can be assumed that ¢ = (gzi,) = 0 over the plane z’ = 0, « will satisfy the equation

0%u  0%u ,
3§2+3 5 = &P, (19)
M?2-1
2 | 12
where prrk = ~ 1—MzZsin?1

This equation is of a type considered in Part I. To illustrate its application we shall first deal
with a case the solution of which we already know from (7) and (9), viz. where the aerofoil
is symmetrical, with plan z’O#’, and has everywhere a slope ¢ in the direction of the stream.
The boundary condition is then that d¢/dy takes the values +¢, —e respectively on the upper
and lower surfaces of the aerofoil plan, so we find

u —kpE |
(6;/) :i:pe asy—>i0 §>0 (20)
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364 J. C. GUNN ON LINEARIZED SUPERSONIC

We must also assume M2?cos?7>1, otherwise the assumption of zero disturbance on the
plane z’ = 0 would be unjustified. Using the Green’s function method developed earlier
we immediately have that at the point (§,, y,)

=€ e[ [P exp{—plR +a J{(E—E0) 2 +y5+ 17}
T N R i e R 21
We shall consider only points on the aerofoil, for which §,>0,y, = 0. We find then
exp{—plk(E—&) +a' JUE—E)*+13]}
~=l, %, (= & =2

This integral is of a similar type to some considered earlier, and admits of a simple geo-
metrical interpretation, if we introduce polar co-ordinates (R, ) in the (£, ) plane with
pole at the point (£, 0). When we take the inverse transform with respect to z’ of (22), we
find simply

$tpzi) = —2 [ dras, (23)
s
where S denotes the area between the ellipse
R = zj/(a' +kcos )

and the positive £y axes (figure 14). If 0, denotes the angle shown in figure 14, such that

cosl, = —Ea—“_lj—,gzg;, J
then we have d(x5, 25) I: fo m+§o f ) secﬁdﬁ: , (24)
so that gi ef:}u—ﬁagz = —?fﬁcos_l (07%%{:)" (25)
g‘% = —gf;_eisec 0df = ~§cosh‘l {sec (71-—91)}“)

After some transformations we thus find that at the point (x,, z,) on the wing, within the
Mach cone from the leading corner,

op € -1 ( mzy—o*xy ) B
7 = wJ(MZcos’T—1) cos 2(zg—mxy))’ where m = tanr,
' (26)
(7¢ d cosh™! (M)
%’ wJ(1—M?2sin?7) a(mzg 7))
k d . 0
The expression for gg = COST a—?,— +-sin 75)%

may then be formed, and it will be seen that it is identical with that which would have been
obtained simply by superposing (7) and (9) with the appropriate value for m in each case,
Viz.
op___ e
iz~ wJ(a*—m?)

— 2
cos—1 o ) ¢ cosh-! {______zo—l—ma xo} (27)

a(zg—mxo) 7 /(1/m™2—a?) a(mzo+ %))
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AEROFOIL THEORY. PARTS I AND II 365

FLAT-PLATE AEROFOIL AT INCIDENCE

The case of the flat-plate aerofoil with plan z'Ox’ at’incidence ¢ can be worked out by
exactly similar methods. We assume again that Msin7<1, Mcos7>1. With the same
notation as previously the boundary condition for dg/dy then gives

3u) € 4
o) =—ceRE £>0. 28
(ay y=0 p g ( )
Using the appropriate Green’s function we have, at the point (£, ¥,),
S R e N (o P 2
A Ay @)
n

Ficure 14

We shall again consider only points on the aerofoil, y = 0, §,>0. Introducing co-ordinates
(R, 0) as before we find

$(Py) = $(En ) = = [ drab, (30)

where now § denotes the area in the £y plane between the £-axis, the ellipse

Zy

k= (@' +kcosf)’

and the parabola 7% = 4. 0,, the angular co-ordinate of the intersection of the ellipse and
parabola, is given by

_ zp—26
cosf, = k17" (31)
It may be easily verified that , = =, if
= tan [jn—(r+)],
%o

i.e. if the point P, lies at the Mach angle from the leading corner; for smaller z3/xj the ellipse
lies entirely within the parabola. For points within the Mach cone from the leading corner

ef_, [0 do ™ df
¢=5{Z°fo a’+/ccosﬁ+2§° 021—cos0}’ (32)
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366 J. C. GUNN ON LINEARIZED SUPERSONIC
) % df A 26, \d0, e[ di
so that 0z, ﬂfo oc’—l—/ccos0+(a’+kcost92—-l——cosﬁ)dzo fo a'+kcosl’

o 2 (33)
9, f 1—cosf’

Hence we find

(?¢ 2¢ 1 &, - 2€v . _; [[xo (a—tan7)

0z w /(a2 —k?) sin 4/{?{, (2 “k)} T aJ(MZcostr—1)°" A/{Z, (1 +atan1)}'
If, as previously, we denote the angle E,éz by A, and write ¢ = tan A/tan g, then d¢/dz’ can
be written in the form

¢ 2€ . _, [{etanT40 a—tan7
0_27~ﬂJ(M2coszr—l)Sln A/(a—otan11+atan1)° (34)

As we should expect (d4/0z") vanishes along Oz’ at the edge of the aerofoil where
0 =—atanr,

and reaches its two-dimensional value when ¢ = 1. However, the whole contribution to
d¢/dz does not come from d¢/dz’; we must also consider the value of d¢/d,, which yields

¢ zo—E&y(a' —k)
oxy 1—M2s1n21) 4/{ O§0 o(c) (o' +k) }
. 2¢ zZ—ox
"~ mcos?7 (14atanr) {(oc—l—tanf) (x—i—ztan'r)}

2¢ , 1—0o
= 5 . 35
meostT(Ltatany) A/{(OH—tanT) (g-{—tan'r)} (38)

It may incidentally be verified as 7— 0 that (34) and (35) reduce to the values given earlier

(Part I), a¢ -
7m‘sm“h/cr i (;—1).

Compounding the results (34) and (35) we finally obtain for the general case

a¢ 26COS T sin- J{ (atan7+0) (@ — ténr))}

o /(M?cos?T—1) (¢—otan7) (14+atant

(1—0)
. (36)
oH—cot'r)\/{ occosr—i—smf (JCOST+SinT)}

MORE GENERAL CASE—FLAT-PLATE AEROFOIL AT INCIDENCE

The more general case of a flat-plate aerofoil with plan z'OA4 (figure 13), at incidence ¢
in the stream M, can be treated by an obvious extension of the methods used above, provided
at least one of the edges 0z', 04 lies outside the Mach cone from O. We suppose that, in
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fact, Oz’ lies within and 04 without the Mach cone. Then, with the notation used previously,
we find for # the boundary condition

(ézf) — f e—kpg—pg tan (7’ —1)v(1—M2sin 27) (§> 0)
y=0

0y/y= (37)

€ _. .
= — —¢ ™Mbt say.

Hence we can deduce, for the transform ¢’ at a point P, of the aerofoil,

2v/ (£80) exp[ p{m’g kEy+a’ J[(g £o)? +’72]}]
=) ], (=T - (3%)

Inverting the transform we find, With (R, 0) as before,

$(P) =2 [[ aras,

where § now denotes the area between the §-axis, the ellipse
| 2 = (m' —k) €y (o +m' cosf) R
and the parabola 7% = 4£&¢,.

Hence we have immediately, for points on the aerofoil within the Mach cone from O,

$(Po) = [{ZO m’ kg"}f a +m' cos9+ g"f 1— cosﬁ (39)

zo— (m'—k) §g—2a'E,
280k +2zy—(m' —k) &y "

The reduction of the expression, which can hence be obtained for d¢/dz, is somewhat tedious,
and the simplicity of the final result suggests that there may be some more elegant method
of derivation. The formulae

(¢'2—m'2) = sec? (1" —7) (M?*cos?7’—1),

(¢’ —m') =sec (1" —7) cosTcos7’ (1 —atan7) (¢—tan7’),

where now cosl, =

and «'+m’"  (14+atan7) (a+4tan7’)
«'—m'~ (e—tan7’) (1—atanr)

are helpful in effecting the straightforward reduction which finally leads to
g _ 2 cosT’ Sin_lA/:(a—l—octanT)( a—tan7’ )}
0z 7. J(M?cos*7’ —1) l1+atant/\a—otan7’

e 1 (1+tanrtant’) (1—0)
-I-—1rf (a+cotT) J {a(0+a2:2;7§1(r:‘7_}_ — Tfr) }, (40)

where, as usual, ¢ = ax/z. ‘The result holds for either positive or negative r and 7', subject
only to the restrictions stated in the first paragraph of this section.
The case when 7" = 0 leads to the particularly simple result

dp 2 . | [(fo+atanT 1—0)
oz ma™ A/(l —I—atanr)+ oc—l—cot'r) A/(o—l—octanr) (41)

VoL. 240. A. ‘ 46
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So far we have restricted our discussion, where lift is involved, to cases where only one
edge of the aerofoil is swept back ‘beyond the Mach angle’. An instance of the type of
“problem not considered is an aerofoil of arrow-head plan pointing upstream, and with the
semi-angle of the arrow less than the Mach angle, so that the arrow-head lies entirely within
the Mach cone from its leading point. A direct solution of the boundary-value problem is
difficult in this case, and to the author’s knowledge none has been given.* However, the
formal difficulties in the way of a direct solution are strongly reminiscent of those encountered
in the analysis of the extended rectangular plate at incidence for which the treatment was
given in Part I, using the Green’s function method, and similar to Schwarzschild’s (1902)
method in treating diffraction at a slit. The physical analogy becomes clear if we consider
the arrowhead aerofoil as the limiting case of a trapezoidal aerofoil (figure 15), when the
breadth 25 of the leading edge tends to zero.

0 0’

wll

Ficure 15

In the last section we have found the velocity potential for flow against a semi-infinite
flat plate aerofoil with plan z'Ox (figure 13) at incidence. Using the same analogy as in
Part I this can be treated as the superposition of a plane wave, giving the two-dimensional
value for the pressure and other quantities over the aerofoil, together with a circular, or more
properly cone, wave C; say, spreading from the corner O. From the results of the previous
section it is easily deduced that the velocity potential of this cone wave is, in fact,

. 2z _ /{e+atant J(1—0)./(0+atanT)
Cl————7&|:cos N/(I-Fatanr)— (1+atan7) . (42)

The ‘trapezoidal problem’ of flow against the plate with plan z’00’z" will be satisfactorily
solved by superposing the plane wave, confined to its area, together with the two cone
waves Cj, C;, until these cone waves run off the aerofoil edges at 4’4 respectively. Behind
these points, although our solution still satisfies the differential equation, and d¢/dy has the
correct value over the aerofoil the solution is invalid on account of the discontinuity in ¢
which appears over the triangular areas of which MA'Z” is typical. The validity of the
solution is restored by superposing two further waves, in this case no longer of the ‘ cone-field’

* Since this was written the author has been informed by Ward that he and Robinson have obtained the
solution in a closed form.
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type beginning at the points 4, 4’ and radiating from one edge over to the other. The process
has to be repeated at B, B’ and so on indefinitely until the end of the aerofoil is reached.
Physically it is clear that the process will be a convergent one, consisting as it does of the
diminishing oscillations of excess pressure between the upper and undersides of the aerofoil.
A water wave analogy in this connexion has already been considered in Part I. -

The convergence is important when we come to the limiting case of the ‘arrowhead’
aerofoil, for then the complete infinite set of superposed waves is necessary for the solution.
A numerical example of this case is discussed below, from which it is clear that in certain
circumstances the convergence is quite quick. Apart from the requirement to superpose
. the complete set of waves the arrowhead case is really simpler to treat than the trapezoidal
one, for each separate wave is then of the cone-field type, and accordingly requires much
less calculation. We shall, however, begin by considering the trapezoidal case.

Referred to the axes 4'x", A'y, A’z" (figure 15) the differential equation of the wave

motion becomes
0% 0% 0% 5, 0%
ag/lz—-}- +2k agllazll - ﬂ 02”2, ) (43)

”n

x
J(1—M2sin?71)°
transform with respect to z”, for a wave beginning at z” = 0, then

02¢Il 32¢Il a¢ll

where £, § are as already defined (18), and " = If 3" denotes the Laplace

g//g‘l‘ 3 +2kﬁ 3&0 = ﬂ2p2¢”3 (44)
and if we define U= 5”5”,
Py % , . :
agnz"l"ay = 2]72",' (45)

If we denote by F(£") the z" transform of C, for x” >0, then in order to annul the potential
discontinuity introduced in the 4z"A'M by C,, we must find u satisfying (45) with the
boundary conditions that u — ¢k#¢” F(£") along the positive x”-axis, and du/dy — 0 along the
negative x”-axis. This problem has already been treated (Part I), and the solution for the
consequent 3" at a point of the negative x"-axis given by {” = — ¥ say, is

" " . —m'p(ﬂ%—g”) g ; i

¢2 _ __f g )//(gll) 19_{_§r/) ( 6)
{Nhere m' = J(a’—k.). It is convenient before inverting the transform to reintroduce %" in
place of &”, and to replace F(£”) by its value

F(gll) — fﬂoe_pz// Cl (x”, Z”) dZ”.
0

At a point P on the aerofoil, the co-ordinates of which are (—W, Z) referred to the (x",2z")
axes, we then find ‘

o — W, Z) = f f J( ) 'ga{z;z"—cot(ﬂw)(W+x”)}dx”dz". (47)

46-2
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370 - J. G. GUNN ON LINEARIZED SUPERSONIG

The contributions to the integral comes entirely from the neighbourhood of the line in the
(x",2") plane, with equation
Z—Wecot(u+71) = z"+x" cot (u+7).

It is easily seen that the integral is zero unless Z> W cot (4+7), i.e. unless that point P lies
within the Mach cone from 4’. If this is so, then integrating with respect to z”,

WN\C{x", Z W+ x") cot (u+71)} »
where the upper limit X for the» 1ntegral is fixed by the vanishing of C) outside the Mach
cone from O, so that Z— (W X) cot (u+1) = Xcot (u—1). : (49)

We have thus determined in terms of the wave C| the velocity potential for the wave Cj.
The formula can also be successively applied for the deduction of all the subsequent waves.
Similar, but more complicated, results can be established for the velocity components,
required to find the excess pressure, but the matter will not be pursued further here.

Ficure 16

We turn rather to the arrowhead wing (figure 16) where, as pointed out above, conditions
are simplified by the cone-field form of all the potentials. The solution is now found by a
method of successive approximation. We start with a plane wave extended over the plan of
the aerofoil, and add to this the two cone waves C, C7 of the form (42) corresponding to the
two edges Oz’, Oz" of the arrowhead. Then the wave C), for example, gives rise to a potential
discontinuity in the triangle z” O M which must be eliminated by an added wave, satisfying the
equation of motion and continuity requirements without disturbing d¢/dy over the aerofoil.
We may suppose that the velocity potential for the waves C) C] can be expressed, irrespective

.. €z €z .
of sign, in the form - S (), - f1(4), and that successive waves from the two edges are

denoted by
ZHW, ZHW, CAHW, ZHW), et

Then either directly, or from (48), it is easy to deduce that, say

J2l) = ffl A)A/( )W+x {cot(ézzﬁc'rb')(%—:o?(i/l Yy (50)
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Z—Wecot(u+7)
cot (g+7)+cot (A—1)’
(—W,Z) with respect to the axes (x”,z") (figure 16) so that cot (r—2A,) = Z/W, A, <7.
(50) can be put in a more convenient form if we write

where " =

and the value of f, is given for a point with co-ordinates

=¥ tan A for A>7,
-z tanu
ax tan A
and p—-.—»——z—=—tan# for A<7.

We also denote tan7/tanp = ¢y, so that p goes from +1 to —a; across the space M’'z" and
o goes from ¢, to 1 across z’M. If then we put f;(1) = g,(v), etc., we find from (50) after
some reduction '

, 1 1 g,(0) do
== (1—p)t 1 . ‘ 1
(p) =5 A= e+0) | G T (otp) Jo—a7) (51)
This expression in fact gives, over the aerofoil and to the left of it within the Mach cone, the
‘reflected’ wave corresponding to the wave g,(¢) coming from the edge Oz'. The complete
solution can then be written, for points on the aerofoil surface

=21+ 3 (1) 1a) +a ),

where 1 denotes the plane wave, and successive g,’s are to be derived from the recurrence
relation (51). Also .

o= (5] L) =

The convergence of the series has not been investigated in detail. Broadly it appears that
the convergence will be fairly speedy except when the arrow angle is only a very small
fraction of the Mach angle. One numerical example has been considered in detail with
incident Mach number /2, and arrow semi-angle 26-3° so that o, = 0-5. The various
stages in the evaluation of the potential are shown in figure 17. In this case only f,, f;
contributed appreciably to the result. The potential across the aerofoil is also shown for this
_case. o

- The excess pressure at any point can be derived from figure 17 by differentiation. However,
the total force on the aerofoil can be found without this step. Thus, if the height of a triangular
plate aerofoil is ¢ the total lift force L is given by

p U? (g;) dz

ctanTt c
L=2 a’xf

—~ctant (c—xcotT)

2002 Moy
_2n Ut aUz & F(0) do,

-0
where the velocity potential for the flow is assumed expressed in the form ¢ = (ez]a) F(a),
and p, now denotes the density of the gas. In the particular case considered we find
L/L, = 0-65, where L, is the lift force which would result from the two-dimensional excess
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372 J. C. GUNN ON LINEARIZED SUPERSONIC

velocity e/a over the surface of the plate. It would be simple to carry out a similar investigation
to that already made for drag, and to give, for example, L/L, as a function of the angle 7
for sweep-back both less and greater than the Mach angle. However, we shall not pursue
the question further at this stage.

0-4f ¢ o8
0-3F Ho-6
J13
= 8
0-2f 4, 04
0-1 0-2
g
| 1 1 | 1 i
-0-5 0 +0°5 10
- o

Ficure 17. Derivation of potential across arrowhead aerofoil semi-angle 26-3°.
Incident Mach number = ,/2.

FURTHER DEVELOPMENTS

A variety of techniques has now been presented for the solution of the boundary-value
problems associated with the linearized equation for supersonic flow. By combination of
the various techniques it is clear that a very wide range of aerofoil problems can be solved,
with arbitrary cross-section and considerable variety in choice of plan. The only outstanding
problem of mathematical interest for which a solution has not been given appears to be the
case of an aerofoil at incidence, with a curved edge swept back beyond the Mach line. This
problem arises, for example, in such a simple case as an elliptic plan. The hydrodynamic
gravity wave analogue of the fundamental problem here is that of the waves produced by
a plank moved normal to itself with a given velocity, and at the same time moved parallel
to its length with a varying velocity less than the velocity of wave propagation. It appears
possible that the solution may be obtained by some method of splitting the motion of the
plank into a series of impulsive jerks (Heaviside unit functions), but it is not proposed to go
into a detailed investigation of the matter.

It is felt that sufficient demonstration has already been given of the wide applicability of
the operational treatment to linearized supersonic aerofoil theory. The advantages of the
formal unity introduced, and of the genérality of the problems for which solutions may be
found, are clear. Before proceeding to more detailed calculations, however, it seems desirable
that the practical validity of the linearized theory should be established in some of the

simpler cases.

My acknowledgement and thanks are due to Professor S. Goldstein, F.R.S., at whose
suggestion these investigations were started, and with whom I have had many helpful
discussions during their progress. '
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